Category: 

What Is FTTP or Fiber-To-The-Premises?

Running a fiber optic cable such as this from one place to another is more efficient than dial-up or cable internet.
Fiber To The Home refers to fiber optic cable that replaces standard copper wire.
Article Details
  • Originally Written By: Dan Blacharski
  • Revised By: Rachel Catherine Allen
  • Edited By: L. S. Wynn
  • Last Modified Date: 30 July 2014
  • Copyright Protected:
    2003-2014
    Conjecture Corporation
  • Print this Article
Free Widgets for your Site/Blog
The highest reliably recorded surface temperature in the world was in Death Valley at 134 F (57 C).  more...

August 20 ,  1955 :  Hundreds of people were killed in anti-French rioting in Morocco and Algeria.  more...

Fiber-To-The-Premises (FTTP) is a technology for providing Internet access by running fiber optic cable directly from an Internet Service Provider (ISP) to a user's home or business. It facilitates much faster speeds than dial-up and most coaxial cable Internet connections, and generally needs to be serviced less. It's also considered one of the most "future proof" types of Internet technology, since there are no foreseeable devices that could use more bandwidth than can be sent via fiber optic cables. Despite its benefits, it is difficult and expensive to install.

FTTP vs. Copper Cable Internet Connections

Most FTTP connections run at least 10 Megabits per second (Mbps), with many closer to 50, and some up to 300 Mbps. Even greater speeds are theoretically possible. Copper cable connections like DSL and cable Internet are often cheaper, but are sometimes harder to install than fiber optic connections. It's easier to damage copper, so it has to be pulled with a much lighter force, but it's also heavier than fiber, which makes it more difficult to pull. Additionally, fiber only loses about 3% of its signal strength over about 328 feet (100 m), while copper can lose up to 94% over the same distance.

Ad


Material


Distance*


Data Transfer Rates

FTTP Fiber optic cable 62 miles (100 km) and up Between 10 and 300 Mbps
Dial-up Access Copper twisted pair cable Very limited — usually only a few miles 56 to 64 Kbps
DSL Copper twisted pair cable Up to 3.39 miles (5.46 km), usually far less Up to 300 Mbps, usually 1.5 to 3 Mbps. The speed is heavily impacted by the distance of the connection and the traffic on the network.
Cable Copper coaxial cable Up to 100 miles (160 km) Up to 30 Mbps, but usually between 1 and 6 Mbps
Fiber-To-The-Node or Neighborhood (FTTN) Fiber optic cable connected to twisted pair or coaxial cable About 1 mile (1.6 km), then connects to fiber optic cable 20 to 100-plus Mbps
Fiber-To-The-Curb or Cabinet (FTTC) Fiber optic cable connected to twisted pair or coaxial cable 1,000 feet (304 m), then connects to fiber optic cable 80 to 100-plus Mbps
* Distance refers to the distance between the user and the Internet source (or amplifier).

How Copper Cable Connections Work

Most types of Internet connections work by means of a copper cable that runs directly to a building. The other end of the cable is connected to a fiber optic cable that goes to the ISP, where the Internet signal originates. This copper wiring is often called the "last mile" connection, though it often runs for much longer than a mile (1.6 km). The potential problem with these types of connections is that electrical signals sent over copper encounter a lot of resistance and tend to get weaker and less clear over distance. This is particularly true in rural areas, where the last mile connection is typically longer than in urban areas.

How Fiber Optic Connections Work

Fiber optic cables are made of long strands of glass covered by protective plastic buffers, and signals are sent via pulses of light rather than electricity. This means that data can be sent extremely quickly with little resistance and deterioration. Though the signals still have to be converted into electricity for a router or computer to use, in FTTP systems, the fiber optic cable runs directly to the user's building. There, it connects to a short copper cable or goes into a Network Interface Device (NID), which converts the light pulses into usable signals.

FTTP can refer to either to Fiber-To-The-Home (FTTH) or Fiber-To-The-Building or Basement (FTTB). FTTH is a system in which the fiber goes directly into individual homes, while FTTB is a system where the fiber goes to the building and from there splits off to multiple subscribers within the building via non-optical connections — like copper cables or a wireless connection. A similar type of connection is FTTN, where a fiber optic cable terminates in a node that users connect to with copper cabling. There is also FTTC, which has an even shorter connection between the end users and the fiber optic cable. All of these technologies are sometimes referred to collectively as FTTx.

Advantages

Speed and Reliability

The main advantages of FTTP are the speed and reliability in transmitting signals. This means that users can both upload and download things quickly, and also have high quality streaming media. This holds true even over long distances, where a signal sent over copper would deteriorate or die out.

Long-Term Use

FTTP is expected to be usable as-is for a very long time. As long as a fiber optic network is made with cable that can transmit the full optical spectrum of light, there's no foreseeable device that would need more bandwidth than it could accommodate. To work fully, the network would also have to be made with cables that can transmit signals while folded, called bend-insensitive fiber. The huge amount of data that can be sent on this type of network also gives technology designers more freedom, since they don't have to worry about bandwidth limits.

Durability

Fiber optic cable is generally more durable than copper, since the materials it's made out of are less susceptible to weather damage. This means that the network doesn't need to be serviced as often, which is more convenient for the ISP and the users. Additionally, most fiber optic cables can be expected to perform reliably for at least 40 years, whereas copper cabling may have to be updated as often as every five years to remain useful.

Remote Monitoring and Control

The nature of the cables also makes fiber optic networks easier to monitor than others. Problems with the network can be identified remotely at the ISP, with some devices able to detect where a problem within about 5 feet (1.5 meters). This makes it easier for technicians to repair any faults quickly.

Most fiber optic connections also come ready-to-use for telephone and TV, not just a computer Internet connection. If a person does decide to only start out with one service, the ISP can activate any additional services remotely whenever they're needed. This can be done on a permanent basis or on demand.

Disadvantages

Difficult and Expensive to Install

FTTP is costly and disruptive to install, and is often more expensive than other types of Internet connections for consumers. Since fiber optic cable is generally buried, companies often have to dig up long trenches to put the cable in. This isn't a problem in undeveloped places, but it can cause problems in urban areas. This is especially true if the fiber optic cable needs to run under roads or bodies of water. There are some workarounds for this, like using existing tunnels or trenches, and in some cases rats or ferrets can pull cable through small areas that are unreachable by people.

The high cost of installation means that it's usually only installed in places that are being newly developed, or where there's a lot of demand for it. These are usually urban areas and areas where people are willing to pay a lot for a fast connection. This means that it's likely to come much later to rural places than others.

Equipment and Power Required

Another disadvantage of FTTP is that the end user has to have some new equipment installed: the NID and a power source for it. The power source has to continually take electricity from the user's building or home, though most do contain a backup battery to power the NID during power outages. If the battery runs out though, the user won't be able to get a connection until the power is restored. This equipment has to be installed in each building, which can be inconvenient, and it does have to be serviced occasionally.

Ad

Discuss this Article

anon959073
Post 5

Just had "fake" "AT&T U-Verse fiber internet access" installed at a business in CA Bay, which turned out to be DSL2 gateway, over the same old existing "DSL1 version" twisted pair copper wires (the old DSL started failing, regularity, every day, at 10 a.m. starting two weeks ago). This, from the CO 9,000 feet away!

I asked the installer the same question about real fiber all the way to user? He said that AT&T fibers to the home are priority, and that businesses will follow. So this means that homes are expected to pay for running fiber everywhere. Once done, fiber will most likely be close to businesses for hookup.

DFMeyers
Post 2

@Vaclav- Since FTTP is at a higher bandwidth, there would be more to offer and therefore drive the price down. We would get more affordable service, and maybe even free ftp in some areas. FTTP is something that definitely needs to be done. It is the future of internet.

Vaclav
Post 1

Since fttp broadband would be faster and have higher quality, I wonder if rates would go up dramatically? The customers would have to pay to replace all the copper and then have the fiber optic cables put into place.

Post your comments

Post Anonymously

Login

username
password
forgot password?

Register

username
password
confirm
email